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Abstract 

In this presentation, I consider the origins and the extent of children’s understanding 

of the inverse relation between addition and subtraction. I argue that this 

understanding might have its origins in children’s informal experiences with physical 

matter but I also show that it is possible to improve children’s grasp of inversion 

through teaching. I also show that his teaching has beneficial effects on children’s 

solutions to sophisticated word problems in which the arithmetical operation that is 

need for the solution is not immediately obvious. 

Introduction 

Soon after children have learned to count, they begin to be taught about addition and 

subtraction at school, and a little later about multiplication and division. These four arithmetical 

operations are at the centre of children’s formal experience with mathematics during their first 

few years at school. The operations are in some ways separate, but there are connections between 

them and it seems very likely, and almost uncontroversial, that it is as important for children to 

learn about these connections as about the individual operations themselves.  

One clear connection is inversion. This is the principle that each arithmetical operation has 

its opposite: the opposite or inverse relation to addition is subtraction, and vice versa. The 

opposite or inverse relation to multiplication is division, again vice versa. One familiar way of 

illustrating the inversion of addition and subtraction is with problems in which the same quantity 

is added and subtracted -  a+b-b . Here the addition and subtraction cancel each other out, which 

removes the need for any computation to solve the problem. If you add and subtract the same 

amount you restore the status quo. If you add more than you subtract, you increase the quantity. 

If you subtract more than you add, you increase it. On the whole children in their first years at 

school do quite well in problems of this sort (Bryant, Christie & Rendu, 1999) and their success 

suggests that they do have some knowledge of the inverse relation between addition and 

subtraction. 

The understanding of inversion must be a basic part of learning about number. It is simply 

impossible to understand the additive composition of number without also knowing about the 

principle of inversion. Additive composition is the principle that numbers are constructed of, and 

can be broken down into, other numbers: 8 can be constructed by adding 3 to 5 and it follows 
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that subtracting 5 from 8 gives you 3. How a number is composed is logically connected to how 

it can be decomposed, and inversion is the key to why this is so (Nunes & Bryant, 1996).  

Another plausible suggestion is that inversion underlies the understanding of the exchanges 

in written addition and subtraction of multi-digit numbers algorithms. Bryant and Nunes (2009), 

Fuson (1990), Gilmore (2006) and Nunes and Bryant (1996) have argued that understanding 

carrying and borrowing requires understanding the inverse relation between addition and 

subtraction. Fuson, for example, argued that, when children are adding 7 tens and 6 tens, in order 

to understand the ten-for-one to the left exchange, they need to realize that they are taking 100 

away from the tens place and adding 100 to the hundreds place; so the value of the total is not 

changed. A similar reasoning is required in a subtraction such as 2107 – 72; the conservation of 

the minuend cannot be understood unless one understands that taking away 100 from the 

hundreds place and adding 100 in the form of 10 tens to the tens place does not change the 

quantity. 

A third reason for an effect of the understanding the inverse addition-subtraction relation 

on computation prowess is that one can use additions to solve subtraction sums if the numbers 

are close to each other. The efficiency of this computation strategy seems obvious in problems 

such as 71 – 69, which could lead to calculation errors if the children were trying to use the 

written algorithm. Counting up from 69 is a quick and easy approach to this subtraction. 

Torbeyns, Smedt, Stassens, Ghesquière, and Verschaffel (2009) reviewed the literature on the 

use of addition to solve subtractions, which they called indirect addition, and found that this is 

considered by many researchers as a useful computational approach (Fuson, 1986; Beishuizen, 

1997 & Brissiaud, 1994).   

In conclusion, it is a good move on the child’s part to use the inverse relation between 

addition and subtraction in order to simplify some difficult computations. It may be necessary for 

understanding multi-digit addition and subtraction with regrouping. Although it may confer an 

advantage in some problems, it is not so easily adopted by children even after teaching. 

Comparative research in which teaching relies exclusively on mental resources versus teaching 

that uses external tools could shed light on why school children did not adopt the method so 

easily in certain studies. But before we consider the question of teaching, let us turn first to the 

origins of children’s understanding of the inverse relation between addition and subtraction. 

Inversion: identity and quantity 

Children’s understanding of inversion may have some roots in the fact that some aspects of 

inversion are familiar parts of their lives very early on. These aspects of inversion are probably 

not quantitative. Suppose that a child gets some mud on his shirt, which someone then washes 

off, and thus the shirt is restored to its former state. This is a form of inversion: mud was added 

and then this mud was subtracted, thus restoring the status quo. But it is possible to understand 

this without having to think about quantity, because the same material –mud – is added and then 

subtracted.  For this reason, we call this kind of inversion the inversion of identity. We contrast it 

with the inversion of quantity. To understand this kind of inversion, you must grasp the fact that 

adding and subtracting the same quantity to and from some initial amount restores the status quo 

even it different items are added and subtracted. For example if I have 5 tennis balls and 

someone gives me two more and also subtracts two different balls from my initial set, I still have 

5 balls even though the addend and the subtrahend were not the same items.  
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We set out to look at 5- and 6-year-old children’s understanding and use of both kinds of 

inversion in a simple experiment in which each child was given a set of inversion problems. In 

each trial we started with an initial quantity which was a tower of bricks stuck together. We 

showed this to the child without allowing him to count the number of bricks in it, and we also 

covered part of the tower with a cover to prevent the child counting all the bricks in the tower. 

Then, with the child looking on, we added some  bricks to the tower and we also subtracted some 

bricks from it. Sometimes we added and subtracted the same quantity (e.g.+2-2). At other times 

we added more than we subtracted (e.g. +2-1) or vice versa (+1-2). After the addition and 

subtraction, we asked the child whether there were now more or less bricks in the tower than at 

the start of the problem or whether the final quantity was the same as the initial quantity. So, this 

was a straightforward test of how well children understand that adding and subtracting the same 

amount restores the status quo, adding more than you subtract increases the overall amount and 

subtracting more than you add decreases it. 

We also used this task to compare children’s understanding of the inversion of identity and 

of  the inversion of quantity. We gave children these problems in two different conditions. We 

called one the identity condition and the other the quantity condition. In the identity condition we 

added bricks to and subtracted them from the same end of the tower. So, when, for example  we 

added two bricks and then subtracted  two bricks, we  added and subtracted the same, identical,  

bricks. In the quantity condition, we added bricks to one end and subtracted them from the other 

end, and so the bricks that we added and the bricks that we subtracted were entirely different 

bricks.  

Our hypothesis was that children learn about the inversion of identity first and extend the 

idea to quantity later. This led to the predictions that  

 the identity condition would be easier than the quantity condition, but some children would 

solve the quantity problems as well as the identity problems 

 the older children would do better than the younger ones with the quantity problems 

 the children would learn about identity before quantity and so there would be several 

children who understand identify inversion but not quantity inversion, but there would be 

no children who understand quantity inversion but not identity inversion. 

All three predictions turned out to be correct. The overall success of the children was far 

greater with the identity than with the quantity problems. The 6-year old children were more 

successful than the 5-year old children in the quantity condition but no better than them in the 

identity condition. Finally, when we looked at children who made  a significantly better than 

chance number of correct choices in the two conditions, we found that 20 out of the 64 children 

produced significantly above chance scores in the difficult quantity condition, and all of these 20 

children also produced significantly above chance scores in the easier identity condition. So there 

are children who can solve the identity problems well, but cannot solve the quantity problems, 

but no children who can solve the quantity problems and yet fail with the identity ones. This is 

clear evidence that understanding the inversion of identity proceeds, and may lead to, the 

understanding of the inversion of quantity.  

Inversion: transparent and non-transparent 

Having established something about the origins of children’s discovery of quantitative 

inversion, I would now like to consider to what extent children are able to use their growing 

knowledge of the principle of quantitative inversion in their mathematical activities. It’s not 
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much use knowing about this principle unless you can use it flexibly. If you simply wait for a+b-

b sums to take advantage if the principle if invariance, then you are going to have a long wait. 

In the next study that I want to present, we looked at the possibility that 8-, 9- and 10-year-

old children sometimes use decomposition to convert problems into ones that can be solved 

through inversion.  Consider the problem 52 + 29 -30. This would be quite a hard sum for 

anyone trying to solve it by computing first the addition and then the subtraction. However, by 

decomposition of the 30 into 29+1 the sum can be transformed into 52+29-29-1 and then into 52-

1. We could find no evidence that children were ever taught to use decomposition to create an 

inversion problem, but we were interested in the possibility that some children might be able to 

invent this kind of solution themselves. 

We presented 8- to 10-year old pupils with a series of  three-term sums which consisted of 

an addition followed by a subtraction . In some sums: 

Each child was given 9 different types of sum as follows: 

1. Control: a+a-b, e.g. 13+13-9 

2. Inversion: a+b-b, e.g. 18+16-16 

3. Inversion (involving multiples of 10): a+b-b, e.g. 17+30-30 

4. Minus 1 decomposition: a+b-(b+1), e.g. 19+12-13  

5. Minus 2 decomposition: a+b-(b+2), e.g. 21+12-14 

6. Minus 3 decomposition: a+b-(b+3), e.g. 21+6-9 

7. Minus 1 decomposition (involving multiples of 10): a+b-(b+1), e.g. 18+30-31 

8. Minus 2 decomposition (involving multiples of 10): a+b-(b+2), e.g. 19+10-12 

9. Minus 3 decomposition (involving multiples of 10): a+b-(b+3), e.g. 26+20-23 

The control problems were designed as sums to which it would be very difficult and 

probably impossible for the children to apply the principle of inversion.  So, the children had to 

compute to do the sum. In the two inversion problems, exactly the same quantity was added and 

subtracted, and these were therefore paradigm a+b-b inversion problems. In the remaining 

problems (problems 4-9) inversion was possible if the child decomposed the subtrahend. In some 

cases (problems 4 & 7) the subtrahend differed from the preceding addend by 1, in others 

(problems 5 & 8) by 2 and in others (problems 6 & 9) by 3.   

Table 1 gives the mean number of correct answers for the control problems and the two 

straight inversion problems (problems 2 and 3). This shows that the children were able to use the 

inversion principle and this was was very helpful to them to do so since they managed to answer 

the inversion problems so much better than the control problems.  

Table 1 

Mean and standard deviation of number of sums correct (out of a possible 4) in the control and 

the straight inversion problems 

Age (years) Control   Inversion   Inversion (10s) 

8 Mean 1.57 3.04 3.13 

9 Mean 1.33 3.84 3.95 

10 Mean 2.20 3.60 3.80 
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  Table 2 gives their mean correct scores in the remaining problems, in which they had to 

decompose the subtrahend in order to take advantage of the latent inversion in the sum. The 

pattern of the results show that most of the scores are noticeably higher than the score for the 

Control problems for the relevant age group as shown in the previous table (Table 1). The main 

exception is the performance of the 8-year-olds when the difference in the quantity of the addend 

and the subtrahend was 3. This was, most probably, because they found it hard to decompose the 

subtrahend to transform the sum into an inversion sum when the addend-subtrahend difference 

was so great. When the addend-subtrahend was 2 or 1, they clearly benefited from the inversion 

that they were able to uncover because their scores were significantly better in these problems 

than in the control problems. 

Table 2 

Mean and standard deviation of number of decomposition sums correct (out of a possible 4)when 

the difference between the quantity of the addend and the subtrahend was 1 (problems 4 and 7), 

2 (problems 5 and 8) and 3 (problems 6 and 9) 

 Age (years)       Difference of 1 Difference of 2 Difference of 3 

 8 Mean 1.91 1.83 1.43 

Standard: 

problems 4-6 

9 Mean 2.58 2.42 2.21 

           10 Mean 3.15 2.90 3.05 

 8 Mean 2.48 2.00 1.65 

With multiples  

 of 10:  

problems 7-9 

9 Mean 2.89 2.84 2.79 

            10 Mean 3.10 3.10 3.16 

 

 These results demonstrate that many 8- to 10-year-old children seem to be able to 

recognise the possibility of transforming a complex sum into an inversion problem and thus of 

making the problem easily soluble. They can actively create inversion.  

  In other work, which I will not describe in any detail here because it is already published, 

Camilla Gilmore and I (Gilmore & Bryant, 2008) showed that many 8-year-old   children can 

create and use inversion in another context. To put it in a nutshell, we presented on a screen 5-

term addition and subtraction sums and we found that the majority, but not all, of the children 

did much better with problems with a latent inversion structure like 15+11-8-3 +? than with 

control problems like 13+11-5-4+?. The positive results are indeed impressive. The children who 

successfully constructed a 4-term inversion problem (14+11-11=?) out of 15+11-8-3 +? needed 

no hint to do so. They plainly saw the power and the usefulness of inversion in arithmetic. 
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Inversion as part of children’s relational calculus 

Up to now, I have stressed the importance of understanding inversion in making numerical 

calculations of one type or another. Now, I wish to turn to what Terezinha Nunes and I (in press) 

have called “relational calculus”, which is about working out relations between quantities.  The 

solution to many arithmetical problems rests on an understanding of the underlying relations 

between the quantities that the problem concerns. Sometimes, this underlying set of relations is 

not transparent. This certainly applies to some problems whose solution depends on the 

understanding and use of inverse relations. 

Consider start-unknown (?+b=c: ?-b=c) and change-unknown (a+?-b; a-?=b) problems. 

When the story in start-unknown problems is about an addition (e.g. I had some sweets and my 

friend Mary gave me 6 more sweets. I counted up how many I now had and it came to 11.  How 

many sweets did I have before Mary gave me any?), the solution depends on subtraction, and 

when it is about a subtraction, the solution is an addition. In a change-unknown problem, when 

the story is about an addition, the solution is a subtraction. However, when the story is about a 

subtraction, the solution is also a subtraction. So, in these start- and change-unknown problems,  

children have to reason in quite a sophisticated way about the underlying structure of the 

quantitative relations in the story, in order to decide whether to add or subtract, and it seems 

highly likely that their understanding of the relation between addition and subtraction play an 

important role in this reasoning. 

 We examined this hypothesis in an intervention study in which we taught some 7- and 8-

year-old children about the inversion principle over two sessions and others for the same amount 

of time about numerical procedures to do with counting and computation. When we taught the 

inversion group about the inverse relation between addition and subtraction, we included start-

unknown but not change-unknown problems. We gave all the children a pre-test with both start- 

and change-unknown problems just before the first intervention and an identical immediate post-

test just after the second of the two intervention sessions. We also gave the children a delayed 

post-test, with start- and change-unknown problems 8 weeks after the end of the intervention. 

 The results, which I shall present in detail in my oral presentation, were mainly positive. 

The children who were taught about inversion did better in the change-unknown problems in the 

post-tests than the children who had been taught about numerical procedures, even though the 

inversion intervention did not include any change-unknown problems. It seems that the 

experience of being taught about the inverse relation between addition was a radical help to the 

children when they had to work out that an addition was the right solution to a change-unknown 

story about a subtraction, and vice versa.  

Conclusions 

 We conclude that the growth of children’s understanding of inversion is an important and 

interesting part of their mathematical growth.  This understanding is probably based on informal 

experiences with what we call identity inversion, which children eventually extend to 

quantitative inversion. This achievement has a momentous impact on their understanding of the 

additive composition of number, on the use of decomposition in arithmetical calculations and 

also on their ability to carry out multi-digit subtractions. It also helps them solve problems, such 

as the start-and change-unknown problems, which depend on their understanding the underlying 

quantitative relations in the problem itself.  It is possible to teach children about inversion, as our 

intervention study showed, and we hope that children will be taught more than they are at present 
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about inverse relation between addition and subtraction, and also between multiplication and 

division (though at present we know very little about children’s understanding of this last aspect 

of inversion). 
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